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Fig. 2, values of the argument for which the function
becomes negative, can be found only after throwing over
the hinged flap, which will change the colour presented
by the whole scale.

Calculation proceeds along a line in the reciprocal
lattice, e.g., by setting the two top scales at fixed values
of k.y» and l.z,, and reading the triple product from
the bottom scale by running the cursor through all values
of h.zp. (A table of the multiples of the atomic coor-
dinates has to be prepared prior to calculation.) Before
the result is read, however, the scattering factor graph
is adjusted to the appropriate value of sin? 6§ and the
end mark of the bottom scale made to coincide with the
curve, to include the scattering factor into the product.
In the high symmetry systems in which triple product
formulae oceur, sin? 6 is often of the form, A24 + k2B +12C,
so that only values of, say, k2B +12C need be tabulated
in advance, the third term being added graphically as
indicated in Fig. 1. (The use of a different function of 0
in the f-graph, such as the cylindrical coordinates of the
reciprocal lattice, may be preferable where values of it
had to be calculated earlier—e.g., for Lorentz-polariza-
tion correction.)

With proper care, the device can be made accurate
enough even for the more advanced stages of structure
determinations. In a precision model, the body was made
of plexiglass and reinforced by a hard aluminium alloy
base plate. The scale carriers were made of the same alloy.
The scales were hand drawn and reduced photograph-
ically onto aluminium offset foil, to eliminate the uneven
shrinkage of the more conventional photographic media.
Care was taken to check the trueness of the photographic
apparatus, a printer’s reducing machine. The scales were
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coated with protective varnish and fastened to their
carriers with araldite cement. The stage for the f-graph
must have a smooth movement, which can be achieved
by letting it run on small tapered wheels in a V-groove
machined into its base plate. The whole f-stage is detach-
able from the rest of the apparatus. For this model, the
standard deviation of the triple product was found to be,
in 100 trial multiplications, two units in the 1000 con-
stituting the range of the product scale. In most cases,
the uncertainty due to the temperature and atomic
scattering factors will be greater than this.

An alternative possibility is to use blank cyclometric
scales on which, by matching them against a master
scale, only those values of cos hx, or sin hz, are marked
that are actually needed; the index h, k or I is written
down, and different colours are used for positive and
negative values. In this way, the interpolations are made
once for all, and large series of structure factors can be
calculated in a shorter time. On the other hand, the
accuracy may be somewhat lower, depending upon the
care taken in drawing the ad-hoc scales.

The first model of this device was built in 1955, when
both authors were guests at the Institute of Chemistry
at Uppsala University. We wish to record our gratitude
to Prof. G. Higg for his permission to have a prototype
built in the workshop of the Institute. We also gratefully
acknowledge the grants that formed the basis of our
sojourns at Uppsala: from Statens Naturvetenskapliga
Forskningstad—the Swedish Natural Science Research
Council—(H. F.), and from Schweizerische Stiftung fir
Stipendien auf dem Gebiete der Mineralogie (A. N.).

The effect of lattice imperfections on the interference function centroid. By RoserT Asimow,
Engineering Division, California Institute of Technology, Pasadena 4, California, U.S.A.

(Received 7 October 1959)

For a large perfect crystal, the interference function
distribution in reciprocal lattice space is well known.
The function has appreciable values only for positions
very near reciprocal lattice points, and further the dis-
tribution is symmetric about each lattice point. As a
result, the precise measurement of lattice parameters for
crystals of high perfection is a relatively straight-forward
procedure. For crystals containing a large number of
imperfections, as in a cold worked metal, the interference
function has appreciable values over a large region of
reciprocal lattice space. Further there is no obvious
relationship between the interference function distribu-
tion and the corresponding distribution of lattice strains
in the crystal. Thus, if diffraction techniques are to be
used to obtain precision parameter measurements for
imperfect crystals, it is necessary to show that some
property of the interference function can be used to
define a mean lattice parameter. In this paper it is shown
that the centroid of the interference function for the
region surrounding the (k, &, l) reciprocal lattice point
corresponds very nearly to the mean reciprocal (%, £, I)
interplanar spacing.

We start by using a method similar to that developed
by Warren & Averbach (1950) and Warren (1955). An
imperfect crystal is considered in which the unit cells are
displaced from their correct positions. The crystal axes
(a, b, ¢} are chosen in a manner convenient for this
problem. The ¢ axis is taken to have a component normal
to the (&, k, I} plane which is equal in length to the mean
interplanar spacing and the other two axes are fixed in
the (h, k,1) plane. In terms of these three axes, the
position of any unit cell is given by

Tuvw = UG +0b +we + ATy +bf‘/uvw +CZyupw » (1)

where w, v, w are integers and z, y, z represent the dis-
placement of the w, v, w unit cell from its regular position.
It is assumed that the lattice strains in the deformed
crystal are small; therefore, 2, y, z are small compared
to u, v, w respectively. The magnitudes and direction of
a, b, ¢ are fixed by the condition that

T=y=2=0, (2)

where Z is the mean value of x averaged over all u, v, w,
and similar definitions apply to ¥ and z.
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In terms of the crystal axes a, b, ¢ it is possible to
define reciprocal lattice axes a*, b*, ¢* in the usual man-
ner. If &, n, { represent variables along the a*, b*, c* axes
respectively, the interference function can be expressed
in terms of these quantities. Warren has shown that with
the particular choice of axes used, only the z displace-
ment causes a broadening of the reciprocal lattice spot
in the ¢* direction. On integrating the interference func-
tion with respect to &, and #, the functional dependence
on { only is obtained. Warren derived the following
equation for this case.

(oo}
I, (8)=N 3 Ay cos 2anl + By sin 2an , (3)
n=0

where { is defined so that {c* represents a distance along
the c* axis from the (k, &, I) reciprocal lattice point, and

Ao = N3 (4)
N3

Ap =2 3 cos 27 (2 —2zw+n) (5)
w=0

B, =0 (6)
Ny

Bn = 2 3 sin 27(zp —2u+n) » (7)
w=0

where N, is the number of unit cells in the crystal in the
¢ direction, N is the number of unit cells contained in
a single reflecting plane, and the summation is taken
over any column of unit cells defined by « and v equal
to constants.

The deviation of the centroid position of the inter-
ference function from the reciprocal lattice point is given

by
3
\ 2 (Aq cos 2ant + By sin 2anl)tdl
C — c;é n:OO . (8)

S 3 (An cos 2anl + By, sin 2anl)dE
—3 n=0

Evaluation of equation (8) results in
[e=]
{ = Z[(=1)*/2an]B, . 9)
n=1

From equation (9) it would appear that £ is zero only for
certain types of imperfect lattices, the most obvious
being a lattice where positive and negative strains of the
same magnitude are equally probable. Because, even for
strains sufficiently small to have a good probability of
existing In a cold worked metal, the elastic modulii
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depend on strain amplitude; the exact satisfaction of this
type of strain distribution is not obvious. However,
under certain quite general conditions it will be shown
that the series of equation (9) converges to negligibly
small values.

From equation (7) it follows that

B, =2N,{ —[(22)%/31142} + [(2n)5/5:] Az — ...}, (10)

where
I Ng
A28 =(1/N3) 3 (20 —2140)°.
n=0

From equation (3) it follows that

3
B, = (2/N)S I, (8)[27E — (278)%/31 +(2nL)8/5! — . . .1dL .

- (11)
Combining equations (10) and (11) we find

2nf =[(2n)?/31)[C° — A2%] — [(2n)5/51][C5 — A28] + . . . . (12)

If the interference function decreases to zero sufficiently
rapidly as { increases, the third and all higher moments
of the distribution are very small. Similarly, if the
lattice strains between neighboring unit cells are suffi-
ciently small, the higher moments of the strain distribu-
tion are negligible. Under these conditions ¢ is very
nearly zero.

If we make the reasonable assumption that 5 and

A—z§ are both of the same order; an estimate of £ can be
obtained for typical cold worked metals. For example,
if we take 2:10-% as an upper limit for both (£%)} and
(423)%, then {<10-7, certainly a value which can be
neglected.®* Thus thec percentage error introduced by
approximating the reciprocal mean interplanar spacing
by the position of the interference function centroid is
about of the same order as the mean cubed strain between
neighboring unit cells.
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A note on the heavy-atom method. By G. A. S, Chemistry Department, The University, Glasgow, W. 2.,

Scotland

(Recetved 11 February 1960)

In a recent paper (Sim, 1959) on the application of the
heavy-atom method to non-centrosymmetric structures
it was shown that improved resolution of the atoms could
be obtained by employing in the Fourier series calculated
from the phase angles xy, amplitudes W|F| rather than

|F[, the weight W assigned to any term depending on
the probable magnitude of the phase-angle error (o — o gr).
As the electron-density distribution is fairly insensitive
to the precise set of weights adopted, any weighting
function which increases smoothly from 0 to 1 as



